WEEKLY TEST TYJ MATHEMATICS SOLUTION 10 NOV 2019
41. (d) Here the centre of circle $(3,-1)$ must lie on the line $x+2 b y+7=0$.

Therefore, $3-2 b+7=0 \Rightarrow b=5$.
42. (a) Radius of circle is $\left|\frac{2+3-4}{\sqrt{5}}\right|=\frac{1}{\sqrt{5}}$

Therefore, equation is $(x-1)^{2}+(y+3)^{2}=\frac{1}{5}$
or $x^{2}+y^{2}-2 x+6 y+1+9=\frac{1}{5}$
or $5 x^{2}+5 y^{2}-10 x+30 y+49=0$.
43. (b) Centre of circle $=$ Point of intersection of diameters $=(1,-1)$

Now area $=154 \Rightarrow \pi r^{2}=154 \Rightarrow r=7$
Hence the equation of required circle is
$(x-1)^{2}+(y+1)^{2}=7^{2} \Rightarrow x^{2}+y^{2}-2 x+2 y=47$.
44. (b) Centre $(1,2)$ and since circle touches x-axis, therefore, radius is equal to 2 .

Hence the equation is $(x-1)^{2}+(y-2)^{2}=2^{2}$
$\Rightarrow x^{2}+y^{2}-2 x-4 y+1=0$.
Trick : The only circle is $x^{2}+y^{2}-2 x-4 y+1=0$, whose centre is $(1,2)$.
45. (c) $2 \sqrt{g^{2}-c}=2 a$
$2 \sqrt{f^{2}-c}=2 b$
On squaring (i) and (ii) and then subtracting (ii) from (i), we get $g^{2}-f^{2}=a^{2}-b^{2}$.
Hence the locus is $x^{2}-y^{2}=a^{2}-b^{2}$.
46. (b) The diameter of the circle is perpendicular distance between the parallel lines (tangents) $3 x-4 y+4=0$ and $3 x-4 y-\frac{7}{2}=0$ and so it is equal to $\frac{4}{\sqrt{9+16}}+\frac{7 / 2}{\sqrt{9+16}}=\frac{3}{2}$. Hence radius is $\frac{3}{4}$.
47. (a) Circle is $x^{2}+y^{2}-2 x-2 y+1=0$ as centre is $(1,1)$ and radius $=1$.
48. (c) Centre is $(2,3)$. One end is $(3,4)$.
P_{2} divides the join of P_{1} and O in ratio of $2: 1$.
Hence P_{2} is $\left(\frac{4-3}{2-1}, \frac{6-4}{2-1}\right) \equiv(1,2)$.
49. (c) In the equation of circle, there is no term containing $x y$ and coefficient of x^{2} and y^{2} are equal. Therefore $2-q=0 \Rightarrow q=2$ and $p=3$.
50. (c) Here $2 \sqrt{g^{2}-c}=2 a \Rightarrow g^{2}-a^{2}-c=0$
and it passes through $(0, b)$, therefore
$b^{2}+2 \mathrm{fb}+\mathrm{c}=0$
On adding (i) and (ii), we get $g^{2}+2 f b=a^{2}-b^{2}$
Hence locus is $x^{2}+2 b y=a^{2}-b^{2}$.
51. (b) First find the centre. Let centre be (h, k), then
$\sqrt{(h-2)^{2}+(k-3)^{2}}=\sqrt{(h-4)^{2}+(k-5)^{2}} \quad \ldots$ (i)
and $k-4 h+3=0 \quad$....(ii)
From (i), we get $-4 h-6 k+8 h+10 k=16+25-4-9$
or $4 \mathrm{~h}+4 \mathrm{k}-28=0$ or $\mathrm{h}+\mathrm{k}-7=0$
From (iii) and (ii), we get (h, k) as $(2,5)$. Hence centre is $(2,5)$ and radius is 2 . Now find the equation of circle.
Trick: Obviously, circle $x^{2}+y^{2}-4 x-10 y+25=0$ passes through $(2,3)$ and $(4,5)$.
52. (b) Centre is $(-4,-5)$ and passes through $(2,3)$.
53. (c) Equation of circle passing through $(0,0)$ is

$$
\begin{equation*}
x^{2}+y^{2}+2 g x+2 f y=0 \tag{i}
\end{equation*}
$$

Also, circle (i) is passing through $(0, b)$ and (a, b)

$$
\begin{aligned}
& \therefore f=-\frac{b}{2} \text { and } a^{2}+b^{2}+2 a g+2\left(-\frac{b}{2}\right) b=0 \\
& \Rightarrow g=-\frac{a}{2}
\end{aligned}
$$

Hence the equations of circle is, $x^{2}+y^{2}-a x-b y=0$.
54. (a) Equation of circle concentric to given circle is $x^{2}+y^{2}-6 x+12 y+k=0$

Radius of circle (i) $=\sqrt{2}$ (radius of given circle)
$\Rightarrow \sqrt{9+36-\mathrm{k}}=\sqrt{2} \sqrt{9+36-15}$
$\Rightarrow 45-k=60 \Rightarrow k=-15$
Hence the required equation of circle is

$$
x^{2}+y^{2}-6 x+12 y-15=0
$$

55. (d) See condition for circle and also condition for circle to pass through origin i.e. origin satisfies equation of circle or $c=0$.
56. (a) Centre $(3,-1)$. Line through it and origin is $x+3 y=0$.
57. (c) As centres lie on angle bisectors of co-ordinate axes or $x=0$ and $y=0$, we get two lines which are perpendicular to each other on which the centres lie i.e. $x=y$ and $x=-y$ or $x^{2}-y^{2}=0$ as combined equation.
58. (b) It is clear from the figure that diameter is $m+n$.

59. (a) Let its centre be (h, k), then $h-k=1$

Also radius $\mathrm{a}=3$
Equation is $(x-h)^{2}+(y-k)^{2}=9$
Also it passes through $(7,3)$
i.e., $(7-h)^{2}+(3-k)^{2}=9$

We get h and k from (i) and (ii) solving simultaneously as (4, 3). Equation is $x^{2}+y^{2}-8 x-6 y+16=0$.
Trick : Since the circle $x^{2}+y^{2}-8 x-6 y+16=0$ satisfies the given conditions.
60. (c) Let $A B$ be the chord of length $\sqrt{2}, O$ be centre of the circle and let $O C$ be the perpendicular from O on $A B$. Then

$A C=B C=\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}}$
In $\triangle O B C, O B=B C \operatorname{cosec} 45^{\circ}=\frac{1}{\sqrt{2}} \cdot \sqrt{2}=1$
\therefore Area of the circle $=\pi(\mathrm{OB})^{2}=\pi$.

